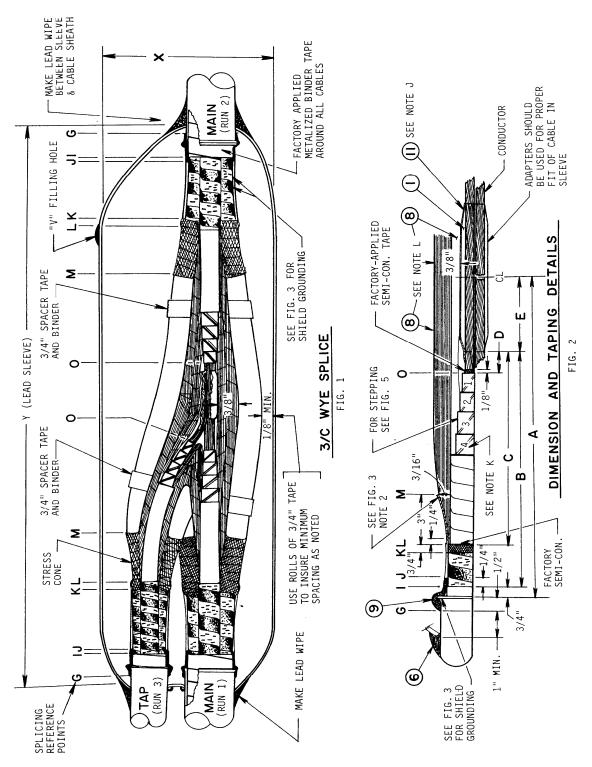
STANDARD NUMBER:

**NSP-200** 


PAGE: 10 DATE: Ser

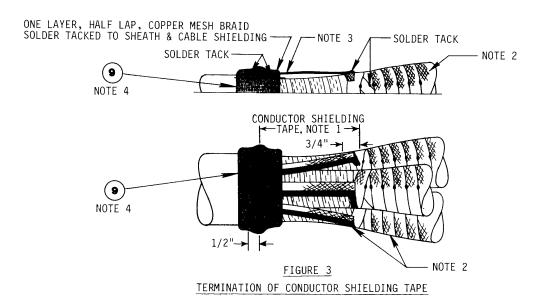
REV:

1 of 5 September 4, 1969 July 24, 2001

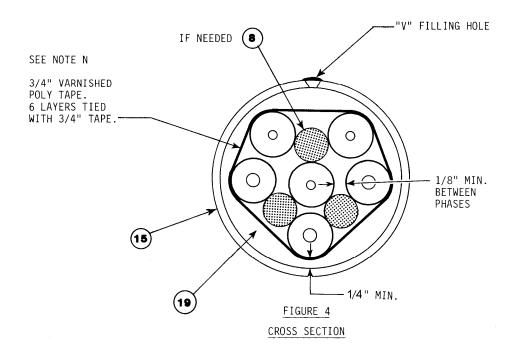
### **CONSTRUCTION GUIDELINE**

## SPLICE, WYE, THREE CONDUCTOR, 26 kV PAPER INSULATED, LEAD SHEATH




ORIGINATOR STANDARDS COORDINATOR STANDARDS SUPERVISOR UNIT DIRECTOR

Lim S-Horm Charles J. Shaffer John Colimna Belly John


#### STANDARD NUMBER: NSP-200

PAGE: 2 of 5

#### SPLICE, WYE, THREE CONDUCTOR, 26 kV, PAPER INSULATED, LEAD SHEATH



- FOR CUTTING DIMENSIONS OF SHEATH, BINDER AND CONDUCTOR SHIELDING TAPE, REFER TO NOTE H AND FIGURE 2.
- 2. WRAP EACH CONDUCTOR WITH A 1/2 LAPPED LAYER OF CREPE PAPER SEMICON FROM K TO M. APPLY SHIELDING BRAID AND SECURE BY PASSING THE END THROUGH THE LAST TURN APPLIED. THIS TAPE TO BE APPLIED BETWEEN POINT M AND 3/4" PAST POINT K.
- 3. THE TRAILING END OF COPPER BRAID, AFTER SECURING, SHALL BE CONNECTED TO THE SHEATH AS ILLUSTRATED.
- 4. SOLDER ENDS OF BRAID. ALSO SOLDER BRAID BETWEEN TURNS, TO CABLE SHIELDING AND TO LEAD SHEATH.



#### STANDARD NUMBER: NSP-200

PAGE: 3 of 5

#### SPLICE, WYE, THREE CONDUCTOR, 26 kV, PAPER INSULATED, LEAD SHEATH

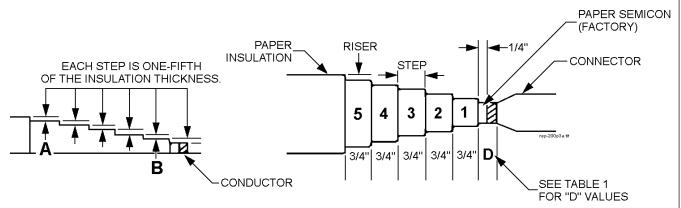



Figure 5
Diagram for Stepping Insulation

#### Notes:

- 1. To allow for variations in paper insulation thickness, riser "A" and one adjacent to it, if required, may be as high as 1/16" and riser "B" as low as 1/32".
- 2. See Table 1 on page 4 for splice dimension "D" values.
- 3. The total number of tapes to be removed for any given step can be determined by counting the total number of paper insulation layers and dividing them by 6.

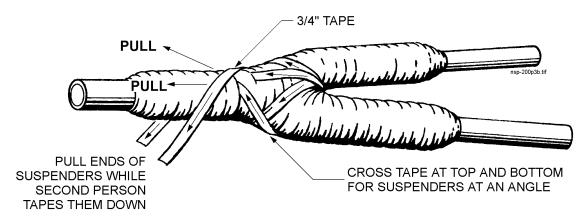



Figure 6
Typical Suspenders

#### Notes:

- **1.** Apply one suspender and tape down to hold. Trim off excess ends used to pull on.
- 2. Suspenders will help to build up sides of "Y" also.
- 3. Do not apply suspenders all at once; use as necessary. Stagger between layers of tape and don't end in the same place, causing a lump.

STANDARD NUMBER: NSP-200

PAGE: 4 of 5

# SPLICE, WYE, THREE CONDUCTOR, 26 kV, PAPER INSULATED, LEAD SHEATH TABLE 1.

|               |       | DIMENSIONS (INCHES) |        |       |     |       |   | COMPRESSION CONNECTOR |             |              |
|---------------|-------|---------------------|--------|-------|-----|-------|---|-----------------------|-------------|--------------|
| SPLICE GROUPS |       | Α                   | В      | С     | D   | E     | х | Υ                     | ITEM<br>NO. | STOCK<br>NO. |
| 500 kcmil     | RUN 1 | 18-5/8              | 15     | 9-1/2 | 2   |       |   | 39                    |             | 07704        |
| 500 kcmil     | RUN 2 | 16-3/8              | 12-3/4 | 8-1/2 | 1/2 | 2-1/8 | 8 |                       | 3           | 67734<br>8   |
| #1            | RUN 3 | 22-3/4              | 16-1/4 | 9-1/2 | 2   |       |   |                       |             | Ŭ            |
| #4/0          | RUN 1 | 17-3/4              | 15     | 9-1/2 | 2   |       |   | 38                    |             |              |
| #4/0          | RUN 2 | 15-1/2              | 12-3/4 | 8-1/2 | 1/2 | 1-3/8 | 8 |                       | 2           | 67734<br>5   |
| #1            | RUN 3 | 21                  | 16-1/4 | 9-1/2 | 2   |       |   |                       |             |              |
| #1            | RUN 1 | 17-1/2              | 15     | 9-1/2 | 2   |       |   | 37                    |             | .==:         |
| #1            | RUN 2 | 15                  | 12-3/4 | 8-1/2 | 1/2 | 1-1/4 | 7 |                       | 1           | 67734<br>0   |
| #1            | RUN 3 | 20                  | 16-1/4 | 9-1/2 | 2   |       |   |                       |             |              |

Approximate measurements. They may have to be adjusted for conditions such as a phasing "Y" and material. Dimension "C" should not be reduced below 8-1/2" (creepage).

#### **MATERIAL LIST**

| ITEM          | QUANTITY | DESCRIPTION                                     | STOCK NO. |  |
|---------------|----------|-------------------------------------------------|-----------|--|
| 1, 2,<br>or 3 | 3 EA     | Connector, Tinned Copper Compression            | *         |  |
| 4             | As Req.  | Adapter, Copper Reducer                         | As Req.   |  |
| 5             | As Req.  | Solder, Rosin Core, 50/50                       | 728504    |  |
| 6             | As Req.  | Wiping Metal                                    | 728528    |  |
| 8             | 23 RL    | Tape, 3/4" Varnished Poly                       | 736682    |  |
| 9             | 4 RL     | Tape, Mesh, 1" Tinned Copper Shielding<br>Braid | 736244    |  |
| 10            | As Req.  | Tape, Cotton, Woven, 1"                         | 736170    |  |
| 11            | As Req.  | 1" Tape, Crepe Paper, Carbon black              | 736245    |  |
| 12            | As Req.  | Yarn, Dry, 100% Cotton                          | 727340    |  |
| 13            | 1 QT     | Oil, Taping                                     | 726320    |  |
| 15            | 1 EA     | Tube, 8" ID Lead, 44" Long                      | Non-stock |  |
| 17            | 8 LB     | Solder, 40-60 Bar                               | 728496    |  |
| 18            | 2 EA     | Flux, Solder                                    | 728112    |  |
| 19            | As Req.  | Compound, Filling                               | 726318    |  |

<sup>\*</sup>See tabulation for proper item and stock numbers.

#### **CONSTRUCTION GUIDELINE**

STANDARD NUMBER: NSP-200

PAGE: 5 of 5

#### SPLICE, WYE, THREE CONDUCTOR, 26 kV, PAPER INSULATED, LEAD SHEATH

#### **SPLICING NOTES**

- **A.** Rack cables in their final positions. Cut mains to butt squarely together. Cut tap to dimensions shown. Allow six-inch excess to facilitate cable positioning.
- **B.** Prepare joint sleeve to fit around joint and prepare sleeve ends for solder.
- **C.** Clean the inside of the sleeve and cable surface where sleeve will rest during splicing. Slip sleeve over cable to this area unless split sleeve is necessary.
- **D.** Remove jacket "A+6" inches on all cables. Remove lead sheath "A" inches and bell out ends. Remove all burrs and sharp edges and prepare sheaths for soldering.
- **E.** Remove overall binder tapes to point I. Remove outer filler to point I and inner filler. Then bind cables together tightly at point J with dry cotton one-inch tape. **Do not overbend cable and break insulation!**
- **F.** Wrap each cable with four wraps of dry cotton one-inch tape for temporary protection and tie at point 0. Put heat lamp on splice at this time to keep moisture off cable at this time.
- **G.** Remove cable shielding and paper insulation tape from each conductor to point 0, leaving at least one-quarter inch of semicon on this conductor to run the crepe paper semicon over. Extra exposed conductor on crotch side is needed to form proper crotch.
- **H.** Remove shielding tape to point K and semicon to point L and step insulation per Figure 3. Temporarily tie down stepped insulation with dry left twist (Stock No. 727023). Steps should be torn and not cut sharply; let them feather out.
- I. Compress connector after conductors are shaped. De-burr connector and smooth out any roughness or sharp points. Use 110° C taping oil for any flushing. **Do not use transformer oil!**
- **J.** Apply one layer of one-inch crepe paper carbon black across connector and conductor between points O; be sure tape covers conductor semicon. Shielding braid soaked in taping oil may be packed into crotch under crepe paper tape to form a radiused crotch for taping.
- **K.** Fill the corner of each step with dry cotton yarn soaked in 40° C taping oil if necessary to fill sharp steps that are not feathered out. Use a heat lamp to keep taping oil hot.
- **L.** Start uniform buildup with three-quarter-inch varnished poly tape to conductor O.D. Apply three-quarter-inch varnished poly tape to build up stress cone and overall thickness as shown. Stop three-quarter-inch tape one-quarter inch from end of factory shielding tape. Apply 40° C taping oil between each tape layer. Figure-eight tape through crotch to get good early buildup. Use "suspenders" from tape in crotch to firm it up. See Figure 6.
- **M.** Install crepe paper between points K and M. Apply ground mesh tape from M to three-quarter inches over point K. Also install one-inch copper mesh tape between points G and J (See Figure 3 for details.). Solder copper ground mesh to bond cable sheath to all shielding tapes.
- **N.** Place tight rolls of tape between phases to keep one-eighth-inch minimum gap between phases. Bind phases together tightly at tape spacers. Keep one-eighth-inch spacing between unshielded phases and lead sleeve.
- **O.** Position sleeve around splice with filling "vee" hole up. Solder sleeve ends to cable lead sheaths. Put "vee" hole on single run side.
- **P.** Tip joint downward and fill with compound ("vee" end up). Allow compound to cool. Then add additional compound as required. Close and solder "vee" hole. (Pour compound at 145° C, approximately 300° F. Do not heat over 400° F (200° C) or it can catch fire.)
- **Q.** Tools shall be kept in drip pan under a heat lamp to prevent contamination and condensation. If splice is to be left overnight, bag and place desiccant inside bag.