1. Scope

This standard covers Seattle City Light (SCL) meter mounting configurations, height, working space, and clearance requirements for single, and multiple-meter (multi-pack) installations when exterior-mounted on residential property.

Requirements for meters installed in meter rooms are outside the scope of this standard.

Physical protection devices (e.g., bollards) may be required. Requirements for such devices are outside the scope of this standard.

2. Application

This standard is for SCL personnel, customers, and installers involved with planning, installing, inspecting, reading, testing, and maintaining exterior mounted electric meters.

3. Definitions

Back wall: The wall onto which a meter enclosure is mounted

Clearance: A specified minimum distance between two objects to assure adequate space for safety, security, or access
Flush-mount: A mounting configuration where the face of the meter enclosure is flush with the exterior sheathing of the back wall. This configuration is not allowed for new construction. See Figure 4.1.

Multi-pack: Two or more meters in a single enclosure

Recessed: A mounting configuration in which the face of the meter enclosure is flush with the exterior sheathing, and for which an enclosure has been created to surround the meter enclosure. This configuration is not allowed for new construction. See Figure 4.1.

Side wall: A wall that is perpendicular to the back wall

Standing surface: The surface defined within the working space upon which a worker will stand to perform work

Semi-flush-mount: A mounting configuration in which the meter enclosure is mounted partially inside the exterior wall to allow for conduit to be run internally. See Figure 4.1.

Surface-mount: A mounting configuration where the meter is mounted on the outside surface (siding) of a wall. See Figure 4.1.

Working space: The space (volume) defined in this standard in which meter installation and maintenance will take place

4. Requirements

4.1 Mounting Configurations

Surface-mount and semi-flush mount configurations are allowed. See Figure 4.1.

Flush- and recessed-mount configurations are not allowed for new construction, as the siding of the mounting wall would then protrude into the working space.

Installers should be aware that the semi-flush mount configuration significantly reduces the offset between the back wall and the face of the meter enclosure. Because the working space begins at the face of the meter enclosure, the space for attaching ancillary equipment to the back wall is greatly restricted.
Figure 4.1. Meter Mounting Configurations (Allowed and Disallowed)

<table>
<thead>
<tr>
<th>Allowed Meter Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface-Mount Meter</td>
</tr>
<tr>
<td>Semi-Flush-Mount Meter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disallowed Meter Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush-Mount Meter</td>
</tr>
<tr>
<td>Recessed Meter</td>
</tr>
</tbody>
</table>

Allowed Meter Configurations

Disallowed Meter Configurations
4.2 Meter Heights

Meter height is the distance measured from the center of the meter face to the standing surface.

See Figure 4.2a for meter height requirements for single-meter installations. See Figure 4.2b for meter and enclosure height requirements for multi-pack installations.

Figure 4.2a. Meter Height Requirements for Single-Meter Installations
4.3 Working Space

An adequate working space is required for safety of personnel who install, read, test, and maintain meters.

A clear and unobstructed working space shall be provided and maintained in front of and to either side of each meter installation.

For single-meter installations, horizontal working space dimensions shall be measured from the centerline of the meter. See figures 4.3a–4.3c.

The working space shall be encompassed entirely within the customer's own property.

The working space is offset from the mounting wall. It begins at the face of the enclosure. See Figure 4.3c.

For multi-pack installations, horizontal working space dimensions shall be measured from the centerline of the farthest right-hand side meter for the right side, and from the centerline of the farthest left-hand-side meter for the left side. See figures 4.3d and 4.3e.

No object shall protrude into the working space, except for the meter itself. This includes the house siding.

The standing surface shall be level, firm, and free from standing water.

Vegetation shall not be allowed to encroach into the working space.

The working space shall not be used as a storage area.
Figure 4.3a. Working Space Requirements for Single Meter Installations, Projection
Figure 4.3b. Working Space Requirements for Single Meter Installations, Front View

- **METER ENCLOSURE**
- **SIDE WALL**
- **BACK WALL**
- Minimum distance from wall to wall: 36" MIN
- Minimum clearances:
 - 18" MIN between METER ENCLOSURE and WALL
 - 85" MIN from METER ENCLOSURE to WORKING SPACE
Figure 4.3c. Working Space Requirements for Single Meter Installations, Top View

- **METER ENCLOSURE**
- **FACE OF METER ENCLOSURE**
- **BACK WALL**
- **SIDE WALL**
- **WORKING SPACE**
- **STANDING SURFACE**

Dimensions:
- 18" MIN x 18" MIN
- 36" MIN x 36" MIN
Figure 4.3d. Working Space Requirements for Multi-Pack Installations, Front View

- Variable with Width of Enclosure
- Working Space
- Meter-Pack Enclosure
- 18” MIN
- 85” MIN
4.4 Clearances

In addition to meter height and working space, clearances must be maintained between meter enclosures and the regulator of a gas meter. A clearance of 36 inches between the nearest edge of a meter enclosure and the nearest edge of the regulator of a gas meter is required. See figures 4.4a and 4.4b.

Customers are encouraged to consult with their gas utility for additional clearance requirements.
Figure 4.4a. Clearance from Gas Meter Regulator, Single Meter Enclosures

Figure 4.4b. Clearance from Gas Meter Regulator for Multi-Pack Enclosures
5. References

National Electrical Code (NEC), NFPA 70; 2020 Edition, National Fire Protection Association, Quincy, MA

6. Sources

Abbott, Jeremy; SCL Electrical Work Review Crew Chief and subject matter expert for 1554.33

National Electrical Safety Code (NESC); C2-2017 Edition, Institute of Electrical and Electronics Engineers (IEEE)

Neuansourinh, Ponet; SCL Standards Engineer and co-originator of 1554.33

SCL Construction Standard 1553.03; “Meter Base and Socket Configurations”

SCL Construction Standard 1561.05; “Underground Residential Service Entrances”

Seattle City Light Technical Metering Operations (TMO)

Seattle Electrical Code (SEC); 2020 Edition; Seattle Department of Construction and Inspections (SDCI)

Shipek, John; SCL Standards Engineering Supervisor and co-originator of 1554.33

Vanderpool, Laura; SCL Standards Engineering Technical Writer and co-originator of 1554.33

WAC 296-45-325; “Working on or Near Exposed Energized Parts”; Washington Administrative Code

Weller, Tief; SCL Electric Service Representative (ESR) Supervisor and subject matter expert for 1554.33